Efficiency Calculations for the Maximum Partial Likelihood Estimator in Nested-Case Control Sampling

نویسندگان

  • Larry Goldstein
  • Haimeng Zhang
چکیده

In making inference on the relation between failure and exposure histories in the Cox semiparametric model, the maximum partial likelihood estimator (MPLE) of the finite dimensional parameter, and the Breslow estimator of the baseline survival function, are known to achieve full efficiency when data is available for all time on all cohort members, even when the covariates are time dependent. When cohort sizes become too large for the collection of complete data, sampling schemes such as nested case-control sampling must be used and, under various models, there exist estimators based on the same information as the MPLE having smaller asymptotic variance. Though the MPLE is therefore not efficient under sampling in general, it approaches efficiency in highly stratified situations, or instances where the covariate values are increasingly less dependent upon the past, when the covariate distribution, not depending on the real parameter of interest, is unknown and there is no censoring. In particular, in such situations, when using the nested case-control sampling design, both the MPLE and the Breslow estimator of the baseline survival function achieve the information lower bound both in the distributional and the minimax senses in the limit as the number of cohort members tends to infinity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficiency of the maximum partial likelihood estimator for nested case control sampling

In making inference on the relation between failure and exposure histories in the Cox semiparametric model, the maximum partial likelihood estimator (MPLE) of the finite dimensional odds parameter, and the Breslow estimator of the baseline survival function, are known to achieve full efficiency when data is available for all time on all cohort members, even when the covariates are time dependen...

متن کامل

Causal Inference for Case - Control Studies

Causal Inference for Case-Control Studies by Sherri Rose Doctor of Philosophy in Biostatistics University of California, Berkeley Professor Mark van der Laan, Chair Case-control study designs are frequently used in public health and medical research to assess potential risk factors for disease. These study designs are particularly attractive to investigators researching rare diseases, as they a...

متن کامل

Cox regression in nested case-control studies with auxiliary covariates.

Nested case-control (NCC) design is a popular sampling method in large epidemiological studies for its cost effectiveness to investigate the temporal relationship of diseases with environmental exposures or biological precursors. Thomas' maximum partial likelihood estimator is commonly used to estimate the regression parameters in Cox's model for NCC data. In this article, we consider a situati...

متن کامل

Estimating a Bounded Normal Mean Relative to Squared Error Loss Function

Let be a random sample from a normal distribution with unknown mean and known variance The usual estimator of the mean, i.e., sample mean is the maximum likelihood estimator which under squared error loss function is minimax and admissible estimator. In many practical situations, is known in advance to lie in an interval, say for some In this case, the maximum likelihood estimator...

متن کامل

Semiparametric estimation exploiting covariate independence in two-phase randomized trials.

Recent results for case-control sampling suggest when the covariate distribution is constrained by gene-environment independence, semiparametric estimation exploiting such independence yields a great deal of efficiency gain. We consider the efficient estimation of the treatment-biomarker interaction in two-phase sampling nested within randomized clinical trials, incorporating the independence b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008